
E L S E V I E R  Journal of Photochemistry and Photobiology A: Chemistry 104 (1997) 85-89 

Jourmlof 

AND 
P H O I ~  

A~!S~RY 

One-way cis > trans photoisomerization of azulenylethenes 

Tatsuo Arai a,., Yasutomo Hozumi ~, Osamu Takahashi ~, Kunihide Fujimori b 
a Department of Chemistry, University ofTsukuba, Tsukuba, lbaraki 305, Japan 

b Department of Chemistry, Faculty of Science, Shinshu University. Asahi 3-1-1, Matsumoto 390, Japan 

Received 11 July 1996; accepted 6 November 1996 

Abstract 

2-Styrylazulene (2) and 1,2-di(azulenyl)ethene (3) undergo one-way cis--, trans isomerization on direct irradiation and on triplet sensi- 
tization. The quantum yield ofcis ~ trans isomerizatio.n (Oc-.t) on triplet sensitization increases with the initial cis isomer concentration and 
exceeds unity (q~c-. t--25 at [cis-2] = 1.7 x 10-3 M). The quantum yields of cis--, trans isomerization of 2 and 3 are in the region of 10-3 
on direct irradiation at the higher excited singlet state $2, but increase with increasing concentration of the cis isomer. These results strongly 
indicate that, even on direct irradiation of 2-azulenylethenes, one-way cis ~ trans isomerization takes place as a quantum chain process in the 
excited triplet state after intersystem crossing. © 1997 Elsevier Science S.A. 
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1. Introduction 

The photochemical cis-trans isomerization of olefins has 
been extensively investigated [1-8].  Stilbene undergoes 
two-way isomerization between cis and trans isomers on 
direct irradiation and triplet sensitization; the former proceeds 
in the singlet manifold [ 1-3 ]. 2-Styrylanthracene isomerizes 
only from the cis to the trans isomer on direct irradiation and 
triplet sensitization through a quantum chain process [4-9].  
l-Styrylanthracene also exhibits one-way cis--, trans isom- 
erization on direct irradiation and triplet sensitization; on 
direct irradiation, the quantum yields of c is - ,  trans isomeri- 
zation are as low as 10- 2 due to other deactivation processes, 
such as cyclization to give dihydrophenanthrene-type com- 
pounds [ 10]. 1-Styrylazulene (1) and its alkyl derivative 
undergo two-way isomerization on direct irradiation deacti- 
vating from the singlet excited state, but they undergo one- 
way cis-* trans isomerization on triplet sensitization [ 11 ]. 
Thus olefins containing azulene rings seem to exhibit differ- 
ent photochemical behaviour on direct irradiation and on 
triplet sensitization. Furthermore, the substitution position 
may contribute to changes in the efficiency and mode of 
isomerization as observed for 1- and 2-styrylanthracenes [ 8-  

10] .  
In this paper, we report that 2-styrylazulene (2) undergoes 

one-way cis--, trans isomerization on direct irradiation and 
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triplet sensitization through a quantum chain process. Fur- 
thermore, 1,2-di(azulenyl)ethene (3) undergoes a similar 
one-way isomerization. 

~= a) 

c/s-! a) on direct irradiation 
b) on triplet sensitization 
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2. Experimental details 

2.1. Materials 

The procedures for the synthesis of 2 and 3 have been 
described elsewhere [ 12]. 
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The solvent benzene was Luminazol from Dojin Chemical 
Company. Benzil was recrystallized from ethanol. 

2.2. Photoirradiation procedure and transient 

spectroscopy 

Absorption and fluorescence spectra were measured on a 
Jasco ~ s t  55 spectrophotometer and a Hitachi F-4000 spec- 
trofluorometer respectively. Fluorescence lifetimes were 
measured using a single-photon counting apparatus (Horiba 
NAES- 1 I00). 

Laser flash photolyses were performed with 308 nm pulses 
(XeCI, lO ns full width at half-maximum (FWHM)) from 
an excimer laser (Lambda Physik LPX-100) and 425 nm 
pulses (stilbene 3, l0 ns FWHM) from an excimer laser- 
pumped dye laser (Lambda Physik FL-3002), with a pulsed 
xenon arc (Wacom, KXL-151, 150 W) as monitoring li£~-t 
source. The detailed set-up has been described previously 
[13]. Sample solutions were deaerated by freeze-pump- 
thaw cycles or by bubbling with argon. 

Photoirradiation was performed under a nitrogen atmos- 
phere in benzene with 366 nm light or 436 nm light from a 
400 W high-pressure mercury lamp passed through a band- 
pass filter (Coming 7-60, 0-52) or a glass filter (L-42) and 
solution filter [ 14] respectively or with 468 nm light or 656 
nm light from a 300 W xenon arc lamp passed through a 
monochromator or bandpass filter (Melles Griot 03FIR006) 
respectively. The isomer compositions were determined by 
high performance liquid chromatography (Waters 600 mul- 
tisolveat delivery system with a 490 programmable multi- 
wavelength detector). 

3. Results and discussion 

3. l. Absorption a M  fluorescence properties 

Fig. I shows the absorption spectra of cis- and trans-2 
(Fig. I (a))  and the fluorescence and excitation spectra of 

trans-2 in benzene solution (Fig. 1 (c)) .  As in the case of l- 
styrylazulene [ 10], the fluorescence from the second excited 
state ($2) only was observed from trans-2 (Fig. 1 (c)) ,  and 
no fluorescence w~s detected from the lowest excited singlet 
state (St). The quantum yield of fluorescence emission is as 
low as 1.6 x 10 -4 in benzene at 24 °C. Both cis- and trans-3 
exhibit absorption spectra (Fig. l (b ) )  at slightly longer 
wavelengths than the corresponding isomers of 2, while no 
fluorescence spectrum was observed from either isomer. The 
fluorescence lifetime of trans-2 is shorter than the time res- 
olution of the nanosecond fluorescence spectromete;, i.e. less 
than 100 ps. The energies of the St and $2 states were esti- 
mated from the onset of the absorption spectra to be 40.9 and 
66.5 kcal mol- t respectively for trans-2 and 40.8 and 59.5 
kcal mol-t respectively for trans-3o Since the absorption 
px 51e in the St region is quite similar for the cis and trans 
isomers of 2 and 3, the St energies were estimated to be the 
same as those of the trans isomers, 40.9 and 40.8 kcal mol- t 
for cis-2 and cis-3, while the $2 energies of cis-2 and cis-3 
were estimated from the onset of the absorption spectra to be 
66 and 59 kcal tool - ! respectively, i.e. similar to those of the 
corresponding trans isomers. 

The anomalous fluorescence observed from the $2 state of 
azulene and its derivatives has been discussed in terms of the 
energy gap between $2 and St. A fluorescence quantum yield 
of @f=0.058 from $2 has been observed for 1,3-dichloro- 
azulene whose energy gap between $2 and St ( E ( S z " S t ) )  is 
as high as 40.9 kcal mol- t [ 15]. The Of value decreases with 
decreasing energy gap between $2 and St and is 0.031 for 
azulene (E(S2--St)  =40.0 kcal mol- t ) ,  0.0081 for 2-meth- 
ylazulene (E(S2-St)-36.9 kcal mo l - ' ) ,  0.0034 for 2- 
iodoazulene (E(S2-St) = 34.6 kcal mol- t), approximately 
10 -4 for 2-methoxyazulene (E (S2 -S  ! ) - 30.0 kcal tool- t) 
and approximately 10 -5 for 2-(dimethylamino)azulene 
(E(S2-St) =20.6 kcai mol-t) ,  lntersystem crossing does 
not play an important role in the deactivation processes, since 
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Fig. !. Absorption spectra of cis and trans isomers of 2 (a) and 3 ( b ) and fluorescence and excitation spectra of trans-2 (c) in benzene at 24 °C. 
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2-iodoazulene with a heavy atom exhibits appreciable fluo- 
rescence and no acceleration of intersystem crossing [ 15]. 
Thus most of the deactivation from $2 takes place to produce 
the ground state So or $1, where $1 may undergo intersystem ~c* 
crossing to the triplet state T~. 

The energy differences, E ( S 2 - S I ) ,  for 2 and 3 are esti- le* 
mated from the above values. The value is highest fez trans-2 
(E(S2-St) -.-26 kcal mol - t )  and decreases in the order of 3c* 
cis-2 (approximately 25 kcal mol - t ) ,  trans-3 (approxi- 3t, + l c 
mately 19 kcal mol -~) and cis-3 (approximately 18 kcal 
mol-  ~). The low ~f value observed for trans-2 and the lack 3t* 
of observation of fluorescence from $2 for cis-2, cis-3 and 
trans-3 are in accord with the energy gap dependence 
described above. 

3.2. Quantum yields of  cis ~ trans isomerization 

Olefins 2 and 3 undergo one-way cis --, trans isomerization 
on direct excitation and on triplet sensitization. On direct 
irradiation at the S~ state with 656 nm light, the quantum 
yields of cis ~ trans isomerization are as low as 4 × 10- 2 and 
!.4 × 10-3 for 2 and 3 respectively at the inRial concentra- 
tions of [cis-2] = 1.0× 10 -3 M and [cis-3] = 1.1 × 10 -3 M. 

Fig. 2 shows the quantum yields of cis - ,  trans isomeriza- 
tion on direct irradiation ( q ~ t )  at 366 nm (cis-2) or 436 
nm (cis-3) and on triplet sensitization (t/~_,) at 468 nm 
with benzil as sensitizer. Both t/~L t and t / ~  t increase with 
increasing concentration of the initial cis isomer. The slope 
and intercept values for 2 are 19 M-1 and 1.1 × 10-3 on 
direct irradiation and 1.4 × 104 M - i  and !.1 on benzil sen- 
sitization; these values for 3 are 2.8 M -  I and 1.7 × 10 -4 on 
direct irradiation and 2.8 × 103 M - I and 0.86 on benzil sen- 
sitization. Since the quantum chain process can only take 
place on the triplet potential energy surface due to the short 
lifetime of the excited singlet state, the cis ~ trans isomeri- 
zation of 2 and 3 should take place in the triplet manifold 
even on direct irradiation. 
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Fig. 2. Effect o f  the initial cis isomer concentration on the quantum yields 
of  c is -* t rans  isomerization of  2 (a  and b)  and 3 (c and d)  on direct 
irradiation (a  ~ d  c)  and on benzil sensitization (b and d)  in benzene at 
ambient temperature. 
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Scheme 1. 

Thus the mechanism of one-way cis ~ trans isomerization 
proceeds via Scheme 1, where the k parameters are the rate 
constants for the corresponding processes and S is the triplet 
sensitizer. According to Scheme 1, the q~~ t and ~'~ n t values 
are described by Eq. (1), where OT is the quantum yield of 
triplet production of azulenylethenes and ktc is the rate con- 
stant for energy transfer frc~m the trans triplet (3t*) to the cis 
ground state (me) 

Oc.+t = rib r × ( 1 + ktc~'T[Cis] ) ( 1 ) 

From the slope and intercept values of the plots of q ~ t  
and t/~n t vs. [cis], we can calculate the kq% values as 
1.8 × 104 and 1.2 x 104 M - ~ respectively for 2. These values 
agree well with each other. Using their mean, kq% = 1.5 X 104 
M-m, and the eT value under an argon atmosphere (15 it.s, 
see below), the energy transfer rate constant from 3t* to ~c 
was estimated to be 1.0 X 109 M -  t s -  !. This value is slightly 
lower than the diffusion-controlled rate constant (kaif) in 
benzene (approximately 1 x 10 l° M-~ s - I ) .  From F_.xl. (2) 
[ 16] for endothermic energy transfer 

kq=koi fexp( -AEa/RT) l[  l + e x p ( - A E a l R T )  ] (2) 

where AEa is the triplet energy difference between the trans 
and cis isomers, we can estimate that the triplet energy of 
trans-2 is approximately 1 kcal tool- J lower than that of cis- 
2. Similar to this treatment, kq'rT was obtained as (0.3- 
1.5) X 104 M- ~ for 3. By using the triplet lifetime of 3 ( !0 
Ixs), the rate constant for energy transfer was calculated to 
be (0.3-1.5) x 109 M- i ,  slightly lower than the diffusion- 
controlled rate constant, which predicts an energy difference 
between cis- and trans-3 of 1-2 kcal mol-  

The intercept values obtained on triplet sensitization are 
close to unity and are in accordance with the quantum yield 
of intersystem crossing of the sensitizer benzil (0.92) [ 17 ]. 
The quantum yields of intersystem crossing of cis-2 and cis-3 
on direct irradiation at S., were estimated to be 1.1 x 10 -3 
and 1.7x 1 0  - 4  respectively from the intercept values 
obtained on direct irradiation of cis-2 and cis-3. 

3.3. Triplet-triplet (T-T) absorption spectra 

Fig. 3 shows the T-T absorption spectra of cir, and trans-2 
and cis- and trans..3 on benzil sensitization under an argon 
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Fig. 3. T - T  absorption spectra observed on excitation of  cis-2 (a)  and trans-2 (b) and cis-3 (c)  and trans-3 (d) in the presence o f  benzil as sensitizer in 

benzene at 24 °C. 

atmosphere with a 425 nm laser pulse. The concentration of 
2 used in this experiment was adjusted to 1 × 10 -4 M, since 
cis-  and #tans-2 absorb 425 nm light. Just after the laser pulse, 
the T-T absorption spectrum of benzil was observed for both 
isomers (Fig. 3(a) and Fig. 3(b)). Then, energy transfer 
from the benzil triplet to cis-  and t rans -2  takes place increas- 
ing the absorbance and changing slightly the spectral profiles 
as observed in Fig. 3 (a) and Fig. 3 ( b ). Since the triplet ener- 
gies of the cis and trans isomers of 2 and 3 were reasonably 
assumed to be equal or slightly lower than the triplet energy 
of azulene (39.8 kcal mol- :) [ 18 ] and are much lower than 
the energy of the benzil triplet (53.4 kcal mol-:) [ 17], the 
energy transfer from the benzil triplet to azulenylethenes 
should proceed at the diffusion-controlled rate constant ( 10 :° 
M-:  s - : ) .  Taking into account the concentration of 2 and 
the rate constant of energy transfer, the energy transfer proc- 
ess is almost complete within 1 Its. Therefore the T-Tabsorp- 
tion spectra observed at 5-10 Its after the laser flash in Fig. 3 
correspond to the azulenylethene triplets. The lifetimes were 
determined for both cis-  and t r a n s - 2  to be 15 Its and 30 Its 
under an argon atmosphere and under degassed conditions 
respectively. Since the spectra observed on excitation o f c i s -  

and trans-2 are very similar, except for the increase in the 
permanent absorption at 440 nm for c i s -2  due to the increase 
in the ground state absorption by cis-~ trans isomerization, 
the observed T-T spectra are reasonably assigned to t rans -2 .  

On direct irradiation, 2 gave no detectable T-T absorption 
spectrum, indicating that intersystem crossing is highly inef- 
ficient. Azulenylethene 3 gave similar T-T absorption spectra 
on benzil sensitization with A ~ = 5 1 0  rim, and l"x = 10 Its 
under an argon atmosphere and ~'T--54 Its under degassed 
conditions (Fig. 3(c) and Fig. 3(d)). 

3.4. M e c h a n i s m  a n d  p o t e n t i a l  e n e r g y  sur face  o f  c i s - - ,  trams 
i somer i~a t ion  

With regard to the mechanism of cis ~trans one-way 
isomerization on $2 excitation, we may expect isomerization 

at the higher excited singlet manifold, at the lowest excited 
singlet manifold or at the triplet manifold. The cis-~ trans 
isomerization on $2 excitation of 2 and 3 takes place as a 
quantum chain process. Furthermore, excitation at St also 
brings about one-way cis-,  trans isomerization with similar 
quantum yields to $2 excitation. Thus it seems that on $2 and 
St excitation, 2 and 3 undergo one-way cis--* trans isomeri- 
zation after intersystem crossing. 

Fig. 4 depicts the potential energy surfaces of one-way 
photoisomerization of azulenylethenes 2 and 3. Both com- 
pounds should undergo isomerization on similar potential 
energy surfaces. Thus, on triplet sensitization, cis- ,  trans 
one-way isomerization should take place on the T: potential 
energy surface. The sensitizer triplet transfers its energy to 
the cis isomers to give the cis triplet state (3c*), which under- 
goes isomerization around the double bond to give the trans 
triplet (st*). The perpendicular triplet state (3p*) is the tran- 
sition state for this process. The resulting st* deactivates 
unimolecularly to the ground state, or :t undergoes energy 
transfer to the cis isomer (:c) to give 3c* to accomplish the 
quantum chain process. 

On direct irradiation of 2 with either 656 or 366 nm light, 
the resulting $2 or St may undergo internal conversion or 
intersystem crossing to give st*, where the isomerization 
takes place only in the cis to trans direction. The intercept 
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Fig. 4. Potential energy surfaces of  one-way photoisomerization of  
azulenylcthenes. 
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values of  the t~c~t vs. [cis] plots give the quantum yields of 
i ntersystem crossing as approximately 10- 3 (cis_2) and 10 - 4 
(cis-3), which are in accordance with the parent hydrocarbon 
azulene [ 15]. 

Azulenylethenes 2 and 3 absorb most of the visible light 
and undergo very inefficient cis ~ trans one-way isomeriza- 
tion. However, on triplet sensitization Oc-. t reaches values 
as high as 25. On direct irradiation in very dilute solution the 
Oc-,t value is as low as l0  -3, and on triplet sensitization in 
the presence of l0  -2 M ofcis  isomer Oc-.t values as high as 
100 can be obtained. Thus we can change the efficiency of 
cis--* trans one-way isomerization of azulenylethenes 2 and 
3 by five orders of magnitude from l0 -3 to 100 by changing 
the irradiation conditions and the concentration of the initial 
cis isomer. 
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